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Subgraph Pooling: Tackling Negative Transfer on Graphs

Introduction

Transfer learning aims to improve the performance on the target by leveraging knowledge from
different yet related sources. However, when the source and target are not closely related, the
target performance may be adversely affected, a phenomenon known as negative transfer. In

New Insight to Mitigate Negative Transfer

For semantically similar graphs, although structural differences lead to significant distribution
shift in node embeddings, their impact on subgraph embeddings is marginal.

Node-level Discrepancy. For nodes u € V% in source graph and v € V! in target graph, we have

A Theoretical Understanding

Theorem 1

For node u € V* in the source graph and v € V! in the target graph, considering the MEAN

this work, we reveal that, unlike image and text, negative transfer co.m.mo.n.ly occurs in graph- - hooling function, the subgraph embeddings are hy, — ZWZﬁ/\{S(U) Zi, h, — ZU+Z£LA1/S(U) %\ here
structured data, even when source and target graphs share semantic similarities. We identify the E .. tZu Zu - (1) n = [Na(w)], m = [Ns(v)]. We have
underlying causes of the issue and provide new insight to solve this. uevsuey zlz,

[hy — hy|| < f|zy — 20| — A, (5)

Contribution

= Negative Transfer in GNNSs. We find that structural differences between the source and
target intensify distribution shifts, as the aggregation process of GNNs is highly sensitive to
variations in graph structures. To address this issue, we present a novel insight: for
semantically similar graphs, although structural differences lead to significant distribution
shift in node embeddings, their impact on subgraph embeddings is marginal.

= Subgraph Pooling to Tackle Negative Transfer. Building upon this insight, we introduce
plug-and-play modules Subgraph Pooling (SP) and Subgraph Pooling++ (SP++) to mitigate
the negative transfer. The key idea is to transfer subgraph information across source and

where A denotes the node-level discrepancy.

Subgraph-level Discrepancy. For node u € V*® with surrounding subgraph S,, = (V;, £,7) and node
v € V! with surrounding subgraph Sf = (V!, £2), we have
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where n$ = [V3|, ml, = [V!|, and e denotes the subgraph-level discrepancy.
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where A =

(1| Ze—20 || =757 |20])

Corollary 1

n+1

denotes the discrepancy margin.

f either of the following conditions is satisfied (|Ns(u)| > |[Ns(v)| or |[Ns(u)]| is sufficiently large),
the inequality ||hy, — hy|| < ||z, — zy|| strictly holds.

Corollary 2

If the following condition is satisfied (|Ns(u)| < |Ns(v)]), the inequality ||hy, — hy|| < [|z2y — Zo|
strictly holds when A > 2, even in extreme case where |[Ng(u)| — 0 and |[Ns(v)| — .
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monstr h r meth n significantl r Xistin lin nder multipl Although node-level discrepancy (\) between source and target is high, the subgraph-level dis- Citation Arxiv
demonsitaie dnat ol merned c2 sigiincandy surpass @dsnng besellnes Under mulep e 5 . pancy (A) 1a tars 5 srap Model | DBLP — ACM ACM — DBLP Time 1 Time 2 Time 3 Time 4
transfer learning settings. crepancy (e) remains low. k-hop and RW (Random Walk) indicate two subgraph sampling methods.
No Transfer| /7823 £0.41 97.19 £0.18 69.60 £ 0.31
Negative Transfer on Graphs Proposed Methods: Subgraph Pooling and Subgraph Pooling s | 1210 Bty 1o B0 o oo
Ulti- . T Z. . T 1. . T Z. . T Z. . = U. . = U.
The key idea is to transfer subgraph-level knowledge across graphs. This is applicable for arbi- (E;ETE\:S ?;'Zg f Z‘gg Zg(l)g f 8'28 2252 f (2)'(132 22'22 f 8’2? 2;’?? f 8'23 ?i‘gi f 8'23
Domain Discrepancy . Node CllaSSiﬁcation trary GNNs by addmg d Subgraph pOOHﬂg |ayer at the end of backbone. SpeCiﬁCa||y, in the SP GNN-SP 7018+ 040 9754+ 101 6776 +023 6836+ 033 6903 +063 6975+ 056
GCN-SP (Ours) o Directly Train - W Transfer layer, we first sample the subgraphs around nodes and then perform pooling to generate sub- GNN-SP++  79.20+0.23 98.20 +0.54 71.43 +0.52 72.75 + 1.24 74.04 +0.83 75.17 + 0.21
V| — wmp § . 282 1a.4 79 oraph embeddings for each node. The choice of sampling and pooling functions can be arbitrary.
% 20 GCN = /6.2 ' Here we consider a straightforward k-hop subgraph sampling: hirport
O 70
@) 0 <L(> ;O 63.3 649 NS(Z) _ Samplek-hop<ga z) (3) Model Brazil — Europe USA — Europe | Brazil — USA Europe — USA|USA — Brazil Europe — Brazil
0| = Subsequently, we pool the subgraph for each node: No Transfer 48.63 + 3.70 50.18 £ 1.76 52.36 £ 6.46
0 50 100 150 200 >0 MLP GCN GCN-SP | 1 . ERM 4500+ 295 3929+£396 47831192 47791466 [39.53+/.7/0 44.62+424
Epoch Backbone h; = . Z W;iZj. (4) Multi-task | 48.55+1.48 47.61+202 4873+201 50.96+2.12 5217 +213 52.92+6.07
INs(@)|+1 Nl EERM 48.77 £ 2.85 4688+ 470 [48.91+4.19 4836 +3.74 4567 +£3.68 46.65+ 593
< 1)Ut
Node Classification with Edge Noise Domain Discrepancy with Edge Noise | JENs | - GTrans 48.50 £ 1.31 4749 +241 4884 +099 4888+ 125 5230+1.50 53.00+4.12
- where h; € H represents the subgraph embeddings (the new embeddings for each node), utilized gm‘gﬁH gg-;g : é-gé 2(1)28 f %é% 2?-82 : 2-‘1“7‘ gz-g; : g-gg g;-gé : 222 2‘5@% : ggi
5,80 -tk GEN-SP(Ours) /W/‘" in training the classifier g(-). w;; denotes the pooling weight, which can be either learnable or fixed. i —— — — I i
© 75 % 51 N SON-SP (0urs) Empirically, the MEAN pooling is effective enough to achieve desirable transfer performance.
S - urs
<c(°3 70 O i However, the performance of SP is highly related to the sampled subgraph, which may lead to GNN - Directly Train GNN - Transfer From DE  mmm GNN-SP - Transfer From DE
o potential over-smoothing when two nodes share an identical subgraph. To mitigate this, we pro- N N Lo e " 0 A R & ; &
pose Subgraph Pooling++ (SP++) that uses random walk to sample neighborhoods around the O O S 0 B ;@ég@ ﬁ % S0 T o ®
oe 04 00 08 10 oe 04 06 B8 10 target nodes, enforcing the distinction in subgraphs <50 <50 T = T R L, &
Noise Ratio (%) Noise Ratio (%) 8 ’ 5 sraphs. I I L7 = L7 = 5
60 60
* EN ES FR PT RU ALL * EN ES FR PT RU ALL T1 T2 T3 T4 T5 T6 T7 T8 T9 T1 T2 T3 T4 T5 T6 T7 T8 T9
. . . . . . . . . . irectly Transfer when Pre-trainin . . GCN SAGE GAT SAGE
Structural differences between the source (DBLP) and target (ACM) amplify the distribution shift on 15 s j GCN-SPr+ NMI: 0897 AR: 0882 - DUECY TONSerWIen FETANNG - fine-tuning on Target Graph
nodes embeddings. Above: We illustrate the discrepancy (CMD value) between node embeddings " el el ? G0 T > %0
X .. . .. - o SEEHOR e s % & - 5.l 4 —— GCN-SP(k=1) © w0 — GON-SP (k=1)
of the source and target during pre-training, and compare the performance of direct training SETIFL © - sl S A B $"1 [ — covspi-s) 5  dnep ko)
: s . S e s < 201 4 ) _ g 701 g
on the target (gray) and transferring knowledge from the source to the target (blue). A large N N ) | Sensprr k= | = 7 - GeNSPt (k=5)
discrepancy results in negative transfer. Bottom: We introduce structural noise in the target I I ° Toochs D e

graph through random edge permutation. Even minor permutations can enlarge the discrepancy
(and thus aggravate negative transfer) in vanilla GCN, yet our method effectively mitigates this.
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