
Subgraph Pooling: Tackling Negative Transfer on Graphs
ZehongWang 1 Zheyuan Zhang 1 Chuxu Zhang 2 Yanfang Ye 1

1University of Notre Dame, Indiana, USA 2Brandeis University, Massachusetts, USA

Introduction

Transfer learning aims to improve the performance on the target by leveraging knowledge from

different yet related sources. However, when the source and target are not closely related, the

target performance may be adversely affected, a phenomenon known as negative transfer. In

this work, we reveal that, unlike image and text, negative transfer commonly occurs in graph-

structured data, even when source and target graphs share semantic similarities. We identify the

underlying causes of the issue and provide new insight to solve this.

Contribution

Negative Transfer in GNNs. We find that structural differences between the source and

target intensify distribution shifts, as the aggregation process of GNNs is highly sensitive to

variations in graph structures. To address this issue, we present a novel insight: for

semantically similar graphs, although structural differences lead to significant distribution

shift in node embeddings, their impact on subgraph embeddings is marginal.

Subgraph Pooling to Tackle Negative Transfer. Building upon this insight, we introduce

plug-and-play modules Subgraph Pooling (SP) and Subgraph Pooling++ (SP++) to mitigate

the negative transfer. The key idea is to transfer subgraph information across source and

target to prevent the distribution shift.

Generality and Effectiveness. Subgraph Pooling is straightforward to implement and

introduces no additional parameters. It involves simple sampling and pooling operations,

making it easily applicable to any GNN backbone. We conduct extensive experiments to

demonstrate that our method can significantly surpass existing baselines under multiple

transfer learning settings.

Negative Transfer on Graphs

0 50 100 150 200
Epoch

0

10

20

30

C
M

D

Domain Discrepancy

GCN-SP (Ours)
MLP
GCN

MLP GCN GCN-SP
Backbone

50

60

70

80

90

A
cc

ur
ac

y

63.3 64.9

78.2 76.2 78.4 79.1

Node Classification
Directly Train Transfer

0.2 0.4 0.6 0.8 1.0
Noise Ratio (%)

65

70

75

80

A
cc

ur
ac

y

Node Classification with Edge Noise

GCN GCN-SP (Ours)

0.2 0.4 0.6 0.8 1.0
Noise Ratio (%)

10

15

20

C
M

D

Domain Discrepancy with Edge Noise

GCN GCN-SP (Ours)

Structural differences between the source (DBLP) and target (ACM) amplify the distribution shift on

nodes embeddings. Above: We illustrate the discrepancy (CMDvalue) between node embeddings

of the source and target during pre-training, and compare the performance of direct training

on the target (gray) and transferring knowledge from the source to the target (blue). A large

discrepancy results in negative transfer. Bottom: We introduce structural noise in the target

graph through random edge permutation. Even minor permutations can enlarge the discrepancy

(and thus aggravate negative transfer) in vanilla GCN, yet our method effectively mitigates this.

New Insight to Mitigate Negative Transfer

For semantically similar graphs, although structural differences lead to significant distribution

shift in node embeddings, their impact on subgraph embeddings is marginal.

Node-level Discrepancy. For nodes u ∈ Vs in source graph and v ∈ Vt in target graph, we have

Eu∈Vs,v∈Vt
zT

u zu

zT
u zv

≥ λ, (1)

where λ denotes the node-level discrepancy.

Subgraph-level Discrepancy. For node u ∈ Vs with surrounding subgraph Ss
u = (Vs

u, Es
u) and node

v ∈ Vt with surrounding subgraph St
v = (Vt

v, E t
v), we have

Eu∈Vs,v∈Vt

∥∥∥∥∥∥∥
1

ns
u + 1

∑
i∈Vs

u

zi − 1
mt

v + 1
∑
j∈Vt

v

zj

∥∥∥∥∥∥∥ ≤ ε (2)

where ns
u = |Vs

u|, mt
v = |Vt

v|, and ε denotes the subgraph-level discrepancy.

ACM → DBLP DBLP → ACM Arxiv T1 Arxiv T3

λ 2.413 2.353 2.134 2.683

ε (k-hop) 0.212 0.380 0.191 0.203

ε (RW) 0.166 0.322 0.184 0.212

Although node-level discrepancy (λ) between source and target is high, the subgraph-level dis-

crepancy (ε) remains low. k-hop and RW (RandomWalk) indicate two subgraph sampling methods.

Proposed Methods: Subgraph Pooling and Subgraph Pooling++

The key idea is to transfer subgraph-level knowledge across graphs. This is applicable for arbi-

trary GNNs by adding a subgraph pooling layer at the end of backbone. Specifically, in the SP

layer, we first sample the subgraphs around nodes and then perform pooling to generate sub-

graph embeddings for each node. The choice of sampling and pooling functions can be arbitrary.

Here we consider a straightforward k-hop subgraph sampling:

Ns(i) = Samplek-hop(G, i). (3)

Subsequently, we pool the subgraph for each node:

hi = 1
|Ns(i)| + 1

∑
j∈Ns(i)∪i

wijzj. (4)

where hi ∈ H represents the subgraph embeddings (the new embeddings for each node), utilized

in training the classifier g(·). wij denotes the poolingweight, which can be either learnable or fixed.

Empirically, the MEAN pooling is effective enough to achieve desirable transfer performance.

However, the performance of SP is highly related to the sampled subgraph, which may lead to

potential over-smoothing when two nodes share an identical subgraph. To mitigate this, we pro-

pose Subgraph Pooling++ (SP++) that uses random walk to sample neighborhoods around the

target nodes, enforcing the distinction in subgraphs.

5 0 5
x0

10

5

0

5

10

15

x1

GCN-SP, NMI: 0.820, ARI: 0.703

5 0 5
x0

10

5

0

5

10

15

x1

GCN-SP++, NMI: 0.897, ARI: 0.882

0 200 400
Epochs

20

40

60

80

Ac
cu

ra
cy

Directly Transfer when Pre-training

GCN-SP (k = 1)
GCN-SP (k = 5)
GCN-SP++ (k = 5)

0 1000 2000 3000
Epochs

70

80

90

100

Ac
cu

ra
cy

Fine-tuning on Target Graph

GCN-SP (k = 1)
GCN-SP (k = 5)
GCN-SP++ (k = 5)

ATheoretical Understanding

Theorem 1

For node u ∈ Vs in the source graph and v ∈ Vt in the target graph, considering the MEAN

pooling function, the subgraph embeddings are hu =
zu+

∑
i∈Ns(u) zi

n+1 , hv =
zv+

∑
j∈Ns(v) zj

m+1 where

n = |Ns(u)|, m = |Ns(v)|. We have

‖hu − hv‖ ≤ ‖zu − zv‖ − ∆, (5)

where ∆ = (n‖zu−zv‖−m−n
m+1 ‖zv‖)

n+1 denotes the discrepancy margin.

Corollary 1

If either of the following conditions is satisfied (|Ns(u)| ≥ |Ns(v)| or |Ns(u)| is sufficiently large),

the inequality ‖hu − hv‖ ≤ ‖zu − zv‖ strictly holds.

Corollary 2

If the following condition is satisfied (|Ns(u)| < |Ns(v)|), the inequality ‖hu − hv‖ ≤ ‖zu − zv‖
strictly holds when λ ≥ 2, even in extreme case where |Ns(u)| → 0 and |Ns(v)| → ∞.

Experimental Results

Citation Arxiv
Model DBLP → ACM ACM → DBLP Time 1 Time 2 Time 3 Time 4

No Transfer 78.23 ± 0.41 97.19 ± 0.18 69.60 ± 0.31

ERM 76.19 ± 0.92 83.07 ± 0.90 65.73 ± 0.57 66.18 ± 0.48 68.67 ± 0.32 70.33 ± 0.29

Multi-task 76.32 ± 2.79 84.56 ± 1.04 50.32 ± 2.17 52.77 ± 2.82 60.02 ± 0.99 67.62 ± 0.75

EERM 67.96 ± 7.30 90.03 ± 5.30 55.25 ± 2.03 57.47 ± 0.59 63.25 ± 0.54 65.26 ± 0.63

GTrans 77.53 ± 1.94 95.19 ± 0.69 65.95 ± 0.12 66.64 ± 0.51 69.51 ± 0.39 71.54 ± 0.30

GNN-SP 79.18 ± 0.40 97.54 ± 1.01 67.76 ± 0.23 68.36 ± 0.33 69.03 ± 0.63 69.75 ± 0.56

GNN-SP++ 79.20 ± 0.23 98.20 ± 0.54 71.43 ± 0.52 72.75 ± 1.24 74.04 ± 0.83 75.17 ± 0.21

Airport
Model Brazil → Europe USA → Europe Brazil → USA Europe → USA USA → Brazil Europe → Brazil

No Transfer 48.63 ± 3.70 59.18 ± 1.76 52.36 ± 6.46

ERM 45.00 ± 2.95 39.29 ± 3.96 47.83 ± 1.92 47.79 ± 4.66 39.53 ± 7.70 44.62 ± 4.24

Multi-task 48.55 ± 1.48 47.61 ± 2.02 48.73 ± 2.01 50.96 ± 2.12 52.17 ± 2.13 52.92 ± 6.07

EERM 48.77 ± 2.85 46.88 ± 4.70 48.91 ± 4.19 48.36 ± 3.74 45.67 ± 3.68 46.65 ± 5.93

GTrans 48.50 ± 1.31 47.49 ± 2.41 48.84 ± 0.99 48.88 ± 1.25 52.30 ± 1.50 53.00 ± 4.12

GNN-SP 48.76 ± 2.61 51.30 ± 2.22 46.06 ± 5.44 49.85 ± 5.55 55.47 ± 5.90 54.72 ± 5.48

GNN-SP++ 50.90 ± 3.93 50.40 ± 2.27 51.06 ± 6.17 53.87 ± 5.99 57.08 ± 6.13 55.23 ± 9.36

EN ES FR PT RU ALL
GCN

40

50

60

A
U

C

GNN - Directly Train GNN - Transfer From DE GNN-SP - Transfer From DE

EN ES FR PT RU ALL
SAGE

40

50

60

A
U

C

T1 T2 T3 T4 T5 T6 T7 T8 T9
GAT

60

70

80

90

F1
 S

co
re

GNN
GNN-SP++

T1 T2 T3 T4 T5 T6 T7 T8 T9
SAGE

60

70

80

90

F1
 S

co
re

GNN
GNN-SP++

33rd International Joint Conference on Artificial Intelligence (IJCAI 2024)

